2009

Máquina de ensaio BMED 2000 160/AT-MNB-2C

Brasvalvulas Comércio e Serviços Ltda.

Rua: Camilo Lopes de Souza, 141 – Vila Emir – São Paulo - SP Tel.: (11) 5614-6051 / 5614-3772 / 5613-6517 / 5612-4019 www.brasvalvulas.com.br brasvalvulas@brasvalvulas.com.br

<u>ÍNDICE</u>

1 – Especificações técnicas	. 3
1.1 – Servoatuadores	. 3
1.2 – Servovalvulas	. 3
1.3 – Unidade hidráulica	. 3
2 – Introdução	. 4
2.1 – Painel frontal	. 6
2.2 – Dimensões	. 7
2.3 – Dimensões das mesas de fixação das amostras	. 8
3 – Instrumentação e controle	. 9
3.1 – Malhas de controle	. 9
3.2 – Controlador	10
4 – Acionamento hidráulico	11
5 – Montagem do equipamento	12
6 – Software ATMP 2.2	12
7 – Configurações de software	13
7.1 – Configurações de IP	13
7.2 – Configurações das entradas analógicas	15
7.3 – Configuração de encoders	16
8 – Calibração	17
8.1 – Célula de carga	18
8.1.1 – Calibração por shunt cal	20
8.1.2 – Calibração por regressão linear	21
8.2 – Transdutor de deslocamento (LVDT)	22
9 – Ensaio	23
9.1 – Controller Panel	23
9.2 – Controller Monitor	24
9.3 – Display Window	26
9.4 – Test Program Setup (profiler)	26
9.4.1 – Inserindo comando no profiler	28
9.5 – Test Monitor	36
9.6 – Limites	37
9.6.1 – Error limits	37
9.6.2 – Signal Limits	38
9.7 – Gravação de dados	38
10 – Anexos	40

1 – ESPECIFICAÇÕES TÉCNICAS

1.1 – <u>Servoatuadores</u>

Fabricante: Brasvalvulas Modelo: BST 20 160/FFD Velocidade: 400 mm/segundo conforme vazão da bomba Capacidade: 20 kN Curso: 160 mm Pressão de trabalho: 210 bar Quantidade: 2 peças / máquina

1.2 – Servovalvula

Fabricante: Brasvalvulas Modelo: ARN 8020 Vazão: 30 lpm Pressão de trabalho: 210 bar Corrente: +/- 20 mA Quantidade: 2 peças / máquina

1.3 – Unidade Hidráulica

Fabricante: Brasvalvulas Capacidade: 280 litros Motor: WEG Modelo: W21, carcaça 200M, 40 cv Bomba: Vickers Tipo: Bomba de palhetas, vazão fixa, modelo 20VQ-11-A-1-A Vazão: 60 lpm Pressão Máxima: 210 bar Quantidade: 1 peça / máquina

2 – INTRODUÇÃO

Esta máquina foi desenvolvida para realizar ensaios dinâmicos de tração e compressão para cargas nominais de até 2000 kg.

Figura 1 – Vista isométrica da montagem da máquina de 2000 kg dupla

A máquina basicamente está dividida em 3 partes: base inferior, módulos de ensaio e unidade hidráulica.

Os módulos de ensaio são compostos por dois servoatuadores Brasvalvulas, modelo BST 20 160/FFD, capacidade aproximada de 20 kN, curso útil de 160 mm e duas mesas de fixação de amostra. As servovalvulas Brasvalvulas são do modelo ARN 8020. A subida e descida do pórtico são feitas através de quatro atuadores auxiliares instalados na lateral da base inferior da máquina. O acionamento desses atuadores é feito manualmente através de duas chaves reversoras instaladas na parte frontal da base de ensaio.

O acionamento do conjunto moto-bomba e da pressão alta é realizado através do controlador Veloz 1400, o que facilita o trabalho além de oferecer mais segurança ao operador e ao ensaio.

Tanto os módulos de ensaio quanto a unidade hidráulica são posicionados e fixados sobre a base inferior que possui quatro vibra-stops, fazendo com que a máquina fique completamente nivelada e estável.

Abaixo, a figura mostra uma vista das 3 partes antes da montagem final.

Figura 2 – Vista em explosão da montagem da máquina de ensaios

2.1 – Painel frontal

Estão localizados na base inferior. Na parte da frente da base, existem os seguintes equipamentos:

- a) Indicador digital de pressão: Indica, em bar, a pressão instantânea da linha hidráulica.
- b) Chave reversora 3 posições 0: É responsável pelo acionamento da válvula de subida e descida dos atuadores auxiliares frontais. Na posição 1, os atuadores auxiliares descem. Na posição 2, os atuadores auxiliares sobem e na posição 0, eles ficam estáticos.
- c) Chave reversora 3 posições 1: É responsável pelo acionamento da válvula de subida e descida dos atuadores auxiliares traseiros. Na posição 1, os atuadores auxiliares descem. Na posição 2, os atuadores auxiliares sobem e na posição 0, eles ficam estáticos.
- d) Botão de emergência: Ao acioná-lo, o operador desliga todo o sistema hidráulico.

Abaixo segue desenho com os equipamentos acima citados.

Figura 3 – Vista dos equipamentos instalados na base inferior

2.2 - Dimensões

O desenho abaixo mostra as principais dimensões da máquina. Lembrando que essas medidas são apenas da máquina de ensaio. A unidade hidráulica deve ser instalada em um ambiente em separado e suas medidas seguem em anexo no final deste manual.

Figura 4 – Dimensões principais da máquina de ensaio de 2000 kg dupla

2.3 – Dimensões das mesas de fixação de amostras

A máquina de ensaios modelo BMED 2000 160/AT-MNB-2C possui duas mesas para fixação de amostra, conforme figura abaixo:

Figura 4a – Mesa de fixação de amostra

3 – INSTRUMENTAÇÃO E CONTROLE

Para realizar o ensaio, a máquina possui dois sistemas de controle em malha através do controlador Veloz 1400/1401, além de sensores e servovalvulas instalados nos servoatuadores. A instrumentação e o controle hidráulico podem ser visto na figura abaixo:

Figura 5 – Instrumentação e servovalvula instalados em cada um dos dois pórticos

3.1 – Malha de controle

O controle é realizado em malha fechada pelo software ATMP 2.2. Nesta máquina é possível realizar o controle de duas formas:

- **Curso** O controle é feito através do deslocamento do atuador. Este sinal é conectado na entrada AC/DC Channel 0 do condicionador de sinais Veloz 1401.
- Força O controle é feito através da carga no atuador. Este sinal pode ser conectado tanto DC Channel 1 quanto no DC Channel 2 do condicionador de sinais Veloz 1401.

3.2 – <u>Controlador</u>

O tipo de controlador utilizado é o Veloz 1400, juntamente com dois condicionadores Veloz 1401. O condicionador de sinais Veloz 1401 será responsável pelo controle de duas malhas conforme descrito abaixo:

Módulo 0 – Controle de Força 0 ou Curso 0

Módulo 1 – Controle de Força 1 ou Curso 1

Abaixo podemos visualizar o esquema de ligação de todos os componentes de controle, bem como o esquema de acionamento da unidade de força hidráulica. Para melhor visualização, este esquema está anexado, em formato A4, na parte final deste manual.

Figura 6 – Esquema de montagem do sistema de controle, monitoração e acionamento elétrico

4 – ACIONAMENTO HIDRÁULICO

Para esta máquina de ensaios, a vazão necessária para movimentação dos servoatuadores será de aproximadamente 60 litros/minuto. Sendo assim, a unidade hidráulica fornecida possui reservatório de 280 litros, pressão máxima de trabalho de 210 bar. O manual dessa unidade hidráulica segue anexado ao final deste manual, assim como o esquema hidráulico abaixo.

Figura 7 – Esquema hidráulico da máquina de 2000 kg dupla

5 – MONTAGEM DO EQUIPAMENTO

A máquina de ensaio é composta pelos seguintes itens:

- a) Um Computador para controle e monitoração do ensaio;
- b) Um Controlador Veloz 1400;
- c) Dois Condicionadores de sinais Veloz 1401;
- d) Uma Fonte 24 Vdc;
- e) Um Hub Switch, padrão Ethernet;
- f) Um Hardkey;
- g) Um CD de instalação do software ATMP2.2 e AqdAnalisys;
- h) 1 Unidade hidráulica de 280 litros;
- i) 1 Máquina de ensaios;
- j) Cabos de ligação em geral;

A 1ª instalação é fornecida gratuitamente pela Brasvalvulas, juntamente com os itens acima. Após a instalação de toda a parte de hardware, é preciso realizar algumas operações antes de ligar a máquina, conforme abaixo;

- Conectar e conferir o aperto de todas as mangueiras de pressão, retorno e dreno;
- Verificar se os cabos estão conectados corretamente;
- Verificar se o motor da unidade hidráulica está com a configuração de tensão correta;
- Verificar se o sentido do giro do motor está correto;
- Verificar se os equipamentos estão com a configuração de tensão correta antes de ligá-los na tomada;
- Ao acionar a bomba hidráulica, essa deve estar em pressão baixa;

- Antes de instalar as servovalvulas, deve-se instalar os blocos de limpeza para fazer "flush", durante pelo menos 3 horas;

6 – INSTALAÇÃO DO SOFTWARE ATMP 2.2

A instalação é simples, bastando apenas colocar CD de instalação do ATMP 2.2 e seguir as instruções na tela. Lembrando que para abrir o programa ATMP 2.2 é necessário que um hardkey esteja conectado ao computador.

7 – CONFIGURAÇÃO DE IP, ENTRADAS ANALÓGICAS E ENCODERS

7.1 – <u>IP – Internet Protocol</u>

Antes de iniciar a calibração dos sensores, é necessário fazer a configuração de IP de cada um dos componentes do controle do ensaio: computador, controlador Veloz 1400, e condicionador Veloz 1401.

Para a comunicação entre estes equipamentos ser possível, utilizamos um HUB do switch para fazer a interligação, via rede ethernet entre eles. Portanto precisamos configurar um IP fixo para cada um deles. Esta configuração é realizada da seguinte forma:

<u>Computador</u>: Clica em Meus locais de rede → Exibir conexões de rede → Botão direito do mouse na Conexão local → Propriedades → Protocolo TCP/IP → Propriedades → Usar o seguinte endereço IP: → Endereço IP: 192.168.1.100 → Máscara de sub-rede: 255.255.255.0 → OK → OK. A figura abaixo mostra a janela de configuração do IP do computador.

ieral Autenticação Avançado	Geral	
Conectar usando: Bealtek RTL8139 Family PCI Fast E	As configurações IP podem ser atr oferecer suporte a esse recurso. C administrador de rede as configura	ibuídas automaticamente se a rede aso contrário, você precisa solicitar ao ções IP adequadas.
Esta conexão usa estes itens:	Obter um endereço IP autom	aticamente
Cliente para redes Microsoft	🛛 🕞 Usar o seguinte endereço IP:	· · · · · · · · · · · · · · · · · · ·
Compartinamento de arquivos e in Agendador de pacotes DoS	Endereço IP:	192.168.1.100
Protocolo TCP/IP	Máscara de sub-rede:	255 . 255 . 255 . 0
Instalar Desinstalar	Gateway padrão:	· · ·
- Descrição	Obter o endereço dos servido	ores DNS automaticamente
Transmission Control Protocol/Internet F	🕞 Usar os seguintes endereços	de servidor DNS:
comunicação entre diversas redes interc	Servidor DNS preferencial:	
Mostrar ícone na área de notificação q	Servidor DNS alternativo:	<u> </u>
Notificar-me quando esta conexão não ela for limitada.		Avançado
	L	

Figura 8 – Configuração de IP do Computador

Então, a configuração do IP do computador ficou assim: 192.168.1.100.

- Controlador Veloz 1400 e condicionador Veloz 1401: É necessária a configuração de IP para o condicionador Veloz 1401 e também para o controlador Veloz 1400. Para fazer essa configuração é necessário abrir o programa ATMP 2.2, clicar em Setup → Hardware Setup → Seleciona Controller Model: ODIN 1400 → Microcomputer Address: 192.168.1.100 → Controller IP Address: 192.168.1.32.

Mais abaixo, deve-se fazer a configuração dos condicionadores 1401, da seguinte forma:

- Módulo 0 = ODIN 1401 IP: 192.168.1.41
- Módulo 1 = ODIN 1401 IP: 192.168.1.42
- Módulo 2 = não utilizado
- Módulo 3 = não utilizado

Para saber se a configuração de IP está correta basta clicar no botão Properties localizado ao lado de cada IP. Ao clicar nesse botão abrirá uma janela mostrando o modelo, número de série e outras informações de cada equipamento. A figura abaixo mostra como deverá ficar a configuração do IP's do controlador e do condicionador.

Hardware Setup	×
Servo Controller DaSP and ATMP Protocols	
Controller Model: ODIN1400	🗸 ок
Microcomputer IP Address: 192.168.1.100	🗶 Cancel
Controller IP Address: 192.168.1.32	
Pump Control: One relay for Pump On/Off Service Manifold: Mode 1: combined solenoids Pump Digital Input: Interlock input Do not interlock 	
Servo Modules	
Microcomputer IP: UDIN1401 IP: 0: 192.168.1.100 Image: 192.168.1.41	
1: 192.168.1.100 💌 192.168.1.42 🍽 Properties	
2: Properties	
3: Properties	

Figura 9 – Configuração de IP do controlador e condicionador de sinais

Na figura 9, podemos ver que existem parâmetros a serem configurados além do IP. Abaixo, segue descrição de cada um:

- **Pump Control**: One relay for Pump On/Off Essa deve ser a configuração deste parâmetro, pois utilizaremos apenas 1 relé para ligar e desligar a bomba hidráulica;
- Service Manifold: Mode 1: combined solenoids Ao deixar esta configuração, o relé de LOW e o de HIGH atuarão juntos, ou seja, quando acionar o HIGH, o relé LOW se manterá acionado. No Mode2: independent solenoids, ao acionar o relé HIGH, o LOW desacionará automaticamente.

 Pump Digital Input: Como o nome fala, essa é uma entrada digital. Neste caso utilizamos essa entrada para monitorar o funcionamento da unidade de força. Ao aparecer algum tipo de erro, a Soft Starter SSW-03 envia uma informação ao controlador Veloz 1400, fazendo com que este paralise todo o sistema, inclusive o gerador de sinais. Isso é feito para evitar possíveis danos ao equipamento e à amostra ensaiada.

7.2 – Configuração das entradas analógicas

A configuração das entradas analógicas é necessária para que se configure itens como o nome da variável, unidade de engenharia, etc. A configuração é simples mas deve-se entender o principio de funcionamento dessas entradas analógicas.

Existem 16 analógicas no total. Como é possível conectar até quatro condicionadores Veloz 1401, então são 4 entradas analógicas para cada condicionador de sinal. A configuração deve ser feita da seguinte forma:

- Name: É o nome da variável (força, curso, torque, etc);
- Unit: É a unidade de engenharia da variável (kgf, mm, N.m, etc);
- Low Limit: É o valor inferior de escala da variável (pode ser inserida manualmente ou calculada pelo Veloz 1400 através de regressão linear ou calibration);
- **High Limit**: É o valor superior de escala da variável (pode ser inserida manualmente ou calculada pelo Veloz 1400 através de regressão linear ou calibration);
- Channel 0, 1, 2 e 3 Módulo 0
- Channel 4, 5 ,6 e 7 Módulo 1
- Channel 8, 9, 10, e 11 Módulo 2
- Channel 12, 13, 14, e 15 Módulo 3
- O primeiro canal de cada módulo será a entrada AC/DC Channel 0;
- O segundo canal de cada módulo será a entrada DC Channel 1;
- O terceiro canal de cada módulo será a entrada DC Channel 2;
- O quarto canal de cada módulo será a entrada Prog In Channel 3;

Para acessar a tela de configuração das entradas analógicas basta clicar em Setup → Analog Inputs. Então abrirá a tela conforme figura abaixo:

💼 Anal	og Input Setup				
	1 . .	ax +b 32			
Channel	Name	Unit	Low Limit	High Limit	Description
>> 0	Curso 0	mm	0	120	
1	Força O	kgf	-500	500	
2	Channel 2	V	-10	10	
3	Channel 3	V	-10	10	
4	Curso 1	mm	0	120	
5	Força 1	kgf	-500	500	
6	Channel 6	V	-10	10	
7	Channel 7	V	-10	10	
8	Channel 8	V	-10	10	
9	Channel 9	V	-10	10	
10	Channel 10	V	-10	10	
11	Channel 11	V	-10	10	
12	Channel 12	V	-10	10	
13	Channel 13	V	-10	10	
14	Channel 14	V	-10	10	
15	Channel 15	V	-10	10	
					>
	OK X Cancel	1			
.					
Channel: 0)				

Figura 10 – Tela de configuração das entradas analógicas

7.3 – Configurações dos encoders

Nesta máquina não há encoders instalados, mas é possível instalá-lo, se necessário. Diferentemente dos sensores AC e DC que são instalados nos condicionadores de sinais Veloz 1401, os Encoders são instalados diretamente no controlador Veloz 1400 através de uma entrada com o nome de ENCODER.

O encoder fornece em sua saída pulsos que serão contados pelo controlador. Então o que se deve saber de um encoder para realizar sua calibração é o numero de pulsos que ele fornece em uma volta de 360°.

Por exemplo: Um encoder da marca Heidenhain, modelo ROD 426 fornece 5000 pulsos por rotação, ou seja, a constante de saída seria: 360°/5000pulsos = 0,072°/pulso.

Só que por uma questão de construção, o software realiza a varredura por quadratura. Isso quer dizer que ele multiplica por quatro os valor de engenharia. Então se deve dividir o valor da constante encontrada por quatro, para que o valor de engenharia esteja correto na leitura, ficando assim:

0,072°/pulso/4 = 0,018 °/pulso = constante de contagem de pulsos

Para configurar as duas entradas de encoder e inserir o valor da constante basta clicar em Setup → Encoders. A figura abaixo mostra a tela de configuração dos encoders.

💼 Enco	🚍 Encoder Setup 📃 🗖 🔀								
B. 6	🕒 🛼 📾 🖬 🚥								
Channel	Name Unit Unit/Pulse Low Limit High Limit								
>> 16	Angulo Torque	Graus	0,018	-589,824	589,824				
17	Flexao Extensao	Graus	0,018	-589,824	589,824				
<		X Cano	cel			>			
Channel: 1	6								

Figura 11 – Tela de configuração dos encoders

Para configurar os encoders, basta apenas configurar os itens abaixo:

- Name: É o nome da variável (Ângulo, por exemplo);
- Unit: É a unidade de engenharia da variável (Graus);
- Unit/Pulse: É o valor da constante de pulsos calculada;
- Low Limit: É o valor inferior de escala da variável (é calculado automaticamente pelo controlador ao inserir a constante de engenharia (Unit/Pulse);
- **High Limit**: É o valor superior de escala da variável (é calculado automaticamente pelo controlador ao inserir a constante de engenharia (Unit/Pulse);

Como são duas entradas de encoder, o controlador utiliza dois canais, assim definidos:

- Channel 16 Encoder 1
- Channel 17 Encoder 2

OBS: O esquema de pinagem de ligação dos encoders encontra-se anexado ao final deste manual.

8 – <u>CALIBRAÇÕES DOS SENSORES</u>

A parte de configuração e calibração requer um pouco de atenção para não danificar o equipamento ou o sensor. O condicionador Veloz 1401 possui quatro entradas de sinais em cada um.

 - AC/DC Channel O – Este canal é configurável, ou seja, podemos ligar tanto um sensor AC (lvdt Brasvalvulas, HBM, MTS) quanto sensores DC (célula de carga, por exemplo). Basta escolher o tipo entrada através de um switch (botão) localizado na placa de cada condicionador Veloz 1401 (AC/DC);

- DC1 Channel 1 – Esta entrada permite apenas sensores DC, como célula de carga e torquímetros;

- DC2 Channel 2 – Esta entrada permite apenas sensores DC, como célula de carga e torquímetros ;

- Prog In Channel 3 – Recebe um sinal DC externo;

O controlador Veloz 1400 possui fundo de escala de leitura nas entradas de +/- 10 Vdc. Esse é o limite de leitura (saturação) que será utilizado para calibração dos sensores. **O esquema de ligação de cada tipo de entrada será anexado no fim do manual**. Abaixo será mostrado passo a passo o processo de calibração de cada sensor.

8.1 – Células de carga e transdutor de torque (Sinal DC)

Estes sensores são do tipo DC, seu esquema de montagem é do tipo ponte completa ou ponte Wheatstone. A resistência da ponte pode ser de 350 ou de 700Ω. Para configurar e calibrar este tipo de sensor é preciso definir alguns parâmetros e saber algumas características provenientes dos mesmos, como por exemplo:

- Fundo de escala Veloz 1400 - Fe - É o valor máximo de tensão que o condicionador lê (10 Vdc);

- Tensão de Excitação - Vexc - Tensão de Excitação do sensor (geralmente é utilizado 10 Vdc);

 - Sensibilidade – S - É o valor da resposta na saída do sensor quanto este atinge o fundo de escala, divido pela tensão de excitação (mV/V);

- **Fundo de escala - FFE** - É o valor da variável medida que faz o sensor atingir a sensibilidade indicada no mesmo (pode ser em kfg, N.m, dependendo do tipo de sensor);

- **Ganho – G** - É o ganho necessário para atingirmos o valor do fundo de escala no Veloz 1401, depende da Vexc e da sensibilidade de cada sensor.

- Exemplo de calculo de ganho (G) necessário para atingir o valor do fundo de escala do Veloz 1401 (Fe):

S = 2 mV/V	Vexc = 10 Vdc	Ganho = ?	Fundo escala (Fe) = 10 Vdc
A fórmul	a para este cálculo é a	G = (Fe * 1000) / (S*Vexc)	
Substitui	ndo pelos valores aci	ma, ficará assim:	G = (10*1000) / (2*10) → G= 500x

Neste caso, o ganho necessário para se atingir o fundo de escala do Veloz 1401 (Fe) será de 500x. O Veloz 1401 possui os seguintes ganhos: User, 1x, 2x, 5x, 10x, 20x, 50x, 100x, 200x, 500x, 1000x, 2000x e 5000x.

Eles são configurados pelos switches 7 e 8 encontrados internamente junto a cada canal na placa. Para saber a posição correta do switch é preciso configurar primeiramente o ganho no software, pois ele fornecerá a configuração dos switches através da coluna denominada Dip Switch na tela de balanceamento, conforme figura 13.

- Exemplo de cálculo do fundo de escala (Fe) da célula de carga com as características abaixo:

S = 1,995 mV/V	Vexc = 10 Vdc	Ganho = 500	Fundo escala (Fe) = ?
A fórmula p	oara este cálculo é a	Fe = (S * Vexc * G) /1000	

Isso quer dizer que ao atingirmos o valor do fundo de escala do sensor (FE), o Veloz 1401 fornecerá uma leitura de 9,975 V no computador. Só que para isso acontecer, temos que inserir este valor no software ATMP 2.2.

Para saber a correta configuração do switch de ganho do canal devem-se seguir os seguintes passos:

Abrir o programa ATMP 2.2 \rightarrow Clica em Setup \rightarrow Analog Inputs \rightarrow Advanced \rightarrow Escolhe o módulo correspondente ao sensor o Module 0, conforme figura a seguir.

🖥 Select ODIN1401 Module 🛛 🗖 🗖 🔀
ODIN1401 Module 0 (A/D channels 03)
C 0DIN1401 Module 0 (A/D channels 47)
C 0DIN1401 Module 0 (A/D channels 811)
ODIN1401 Module 0 (A/D channels 1215)
🖌 OK 🛛 🗶 Cancel

Figura 12 – Tela de escolha do módulo a ser calibrado e/ou balanceado

Então abrirá a tela de configuração, balanceamento e calibração da célula de carga, conforme figura abaixo:

ODIN	1401 Ser	vo Module Setup	_									
88	🕒 🛼 🛱	🛍 🔰 🛇 🕻	2 📲	Ma 🛛	<u>D</u> isplay							
Bala	ince:		1 <mark>2767</mark> Se	ensor Powe	er 1: 10 V	Sensor Pow	er 2: 10 V 💌	I				
User (Gain: x 1	I54 Set S	2 7:0FF 8:0		Atenuator	Gain Code:		152				
0'	ffset:		1 <mark>27</mark>		-	<mark>0</mark>						
) t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	२. २. 🕾 🐻 🏾 1	x 🕺 🗌	0,500 s/	/div	Unit: A/D input	-					
	10											Channel 0
	5-											
	0-				No.						in tota	teritab.
	-5-											
	-10+ 0,0 s			0,5	s		1,0 s			1,5 s		
nnel	Mod CH	Signal Name	Unit	Input	Gain	Dip Switch	Lowpas Filter	Use Balance	Balance	Static	Static Eng	RCal
. _	₽ 0	Channel 0	V	AC	User	S2 7:0FF 8:0N	100 Hz	YES	7,7263 V	0,0000 V	(D RCAL to GND
	✓ 1	Torque Rotacion	N.m	DC	× 500	S3 7:0FF 8:0N	100 Hz	YES	0,0014 V	-0,0016 V	. (D RCAL to GND
	Γ2	Channel 2	V	DC		S4 7:0FF 8:0N	100 Hz	YES	0,0171 V	0,0167 V		
	Γ3	Channel 3	V	DC	×1	S5 7:0N 8:0FF	1000 Hz	No	0,0187 V	0,0000 V		D RCAL to GND
ш												
	🗸 ок	X Cancel										
1· 370	59	H15.15 · S1.2.11	Servo /	0 - IP 192.1	68.1.41	ON LINE						

Figura 13 – Tela de configuração e balanceamento dos canais

- Para configurar e calibrar a célula de carga primeiro é preciso habilitar somente o canal que será balanceado através da caixa de seleção na coluna Mod. CH.
- Depois é a vez de configurar o ganho (que deve ser calculado, conforme explicado anteriormente) na coluna Gain. Ao escolher o ganho, a coluna ao lado denominada Dip Swit-

ch mostrará a posição dos switches 7 e 8 que deverá ser configurada manualmente na placa de cada condicionador Veloz 1401.

- A seleção de Lowpas Filter (Filtro passa-baixa) menor é indicado para reduzir eventuais ruídos nos sinais dos sensores.
- Para realizar o balanceamento da célula é preciso que a coluna Use Balance esteja em

YES. Com isso feito e o sensor conectado no local correto, é só clicar no ícone 🏄 para iniciar o balanceamento do canal habilitado.

Lembrando que balanceamento apenas "zera" a célula de carga e deve ser feito apenas quando a mesma estiver sem carga. A calibração pode ser feita por duas formas:

8.1.1 - Calibração por Shunt Cal;

Para isso ser possível é necessário que um resistor de precisão esteja plugado na placa do canal a ser calibrado. Outro fator importante é saber a resistência da ponte da célula de carga (ge-ralmente é de 350 ou 700 Ω) e também a sensibilidade (S) e o fundo de escala em força da célula (FFE).

Obtendo esses dados podemos calcular a deformação que o resistor de shunt causará ao ser conectado internamente, via software, a um dos braços da ponte. Esse valor deverá ser inserido na coluna Shunt Eng do canal

Exemplo do calculo de deformação por Rshunt (Feq):

A fórmula de cálculo é:
$$\frac{Feq}{Ffe} = \frac{1}{(4 \times S) \times (\frac{Rshunt}{Rponte} + 0, 5)}$$

Onde:

Feq = Força equivalente do Rshunt (kgf);
Ffe = Força do fundo de escala da célula de carga (kfg);
S = Sensibilidade da célula de carga (mV/V);
RShunt = Valor do resistor shunt (Ω);
Rponte = Valor de resistência da ponte da célula de carga (Ω);

Exemplo de dados característicos de uma célula de carga:

Substituindo a formula, obtém-se:

$$\frac{Feq}{Ffe} = \frac{1}{(4 \times S) \times (\frac{Rshunt}{Rponte} + 0,5)} \qquad \Rightarrow \qquad \frac{Feq}{2000} = \frac{1}{(4 \times 0,002) \times (\frac{176000}{700} + 0,5)} \qquad \Rightarrow$$

$$\frac{Feq}{2000} = \frac{1}{2,015} \rightarrow \frac{Feq}{2000} = 0,496 \rightarrow Feq = 2000 \times 0,496 \rightarrow Feq = 992,344 \text{ kgf}$$

O valor encontrado de 992,344 kgf deverá ser inserido na coluna Shunt Eng. Feito isso é só clicar no ícone de Calibração por Shunt Cal

Então o condicionador Veloz 1401 irá conectar o resistor de shunt e ler o valor resultante na saída em Volts e, juntamente com o valor de balanço em zero obtido anteriormente calculará os valores máximos e mínimos de leitura para esta célula de carga. Para sair dessa janela é só clicar em OK.

8.1.2 - Calibração por regressão linear:

Este procedimento só é realizado após realizar os cálculos de fundo de escala. Abaixo segue exemplo deste cálculo:

Exemplo de cálculo do fundo de escala (Fe) da célula de carga com as características abaixo:

S = 1,995 mV/V Vexc = 10 Vdc Ganho = 500 Fundo escala (Fe) = ? FFE = 2000kgf

$$Fe = \frac{(S \times Vexc \times G)}{1000} \Rightarrow Fe = \frac{(1,995 \times 10 \times 500)}{1000} \Rightarrow Fe = 9,975 V$$

Após balancear a célula como mostrado anteriormente, clica em Setup → Analog Inputs → Clica com o mouse sobre o canal a ser calibrado e logo em seguida sobre o ícone de Calibração por Regressão Linear ^[L]. Então abrirá a tela de calibração, conforme figura abaixo:

Calibration	Calibration by Linear Regression 🛛 📀							
			Calibration Table —					
		A Next	A/D Voltage:	-3,555	56	V		
Channel:	2	Previous	Calculated Value:		129,14	36 V		
Name:	Channel 2		Engineering Value:	129,2	1	V		
Unit:	V		🕰 Be	ead A/E				
Specified Lin	mits High	_	≓ ≸ Accept		V	Eng Value	-	
-10	10	V	+ Remove	1	-5,9848	80,26		
-10,0	10,0	V	_ inemove	2	-8,4933	30,06		
Calculated L	.imits			3	-3,5556	129,2		
Low -0,2455828	High 6 401,31	V	📴 Сору					
Gain K Gain 1/K	 0,0498063 20,0777 	v 11 V/V 18 V/V	Correlation 100,00 %					
Confirm	New Limits		🚽 Close	•	🗙 Cancel			

Figura 14 – Tela de Calibração por Regressão Linear

O primeiro passo é verificar se nome e o número do canal a ser calibrado está correto no canto esquerdo superior da tela. Se estiver correto deve-se remover todos os valores que por acaso estejam inseridos nas colunas V e Eng Value através do botão Remove.

Para inserir os novos valores é necessário inserir dois valores de tensão e valor de engenharia da seguinte forma:

Como a célula foi balanceada em zero, isto quer dizer que ela não está sofrendo nenhum tipo de esforço então deve se inserir os valores abaixo:

- → A/D Voltage = 0 V → Engineering Value = 0 kgf → Clica em Accept
- Agora se deve inserir o valor de tensão calculado para a força do fundo de escala (FFE) da célula:
- → A/D Voltage = 9,975 V → Engineering Value = 2000 kgf → Clica em Accept

Com esses valores inseridos, o software irá calcular automaticamente os valores máximos e mínimos de leitura em força para a célula de carga usada como exemplo. Esses valores aprecem nos campos Calculated Limits Low e High. Se estiverem corretos, basta clicar em Confirm New Limits e em seguida em Close.

8.2 – Transdutor de deslocamento – LVDT (Sinal AC)

Para calibração do lvdt, é necessário que o atuador esteja livre pois é necessário que o mesmo avance até o fim de seu curso. Há vários tipos de lvdt, dos quais os mais utilizados são:

- Tipo ponte (HBM) = saída de 0 a 10 V, ganho User, 160x aproximadamente;
- Tipo transformador (Brasvalvulas) = saída de +/- 10 V, ganho de 20x;

Após configurar o nome e a unidade de engenharia, clica em Advanced, seleciona o módulo do lvdt e na tela de configuração apenas seleciona o ganho e verifica se o tipo de entrada (Input) está em AC. Clica em OK.

A calibração do lvdt será feito por Calibração por Regressão Linear 🔟.

Após selecionar o canal, deve se remover os todos os valores através do botão Remove. Agora com o atuador recuado deve-se clicar no botão Read A/D (ler A/D) e inserir o valor de 0 (zero) mm no Engeneering Value, depois clica em Accept.

Agora se deve avançar o atuador até o final de curso. Note que o valor do Read A/D mudou. Então insira o valor do deslocamento real do atuador no Engeneering Value e em seguida em Accept. Clica em Confirm New Limits e em Close. Pronto está feita a calibração do lvdt.

9 – <u>ENSAIO</u>

Agora é possível dar inicio ao ensaio propriamente dito. Para isso é necessário que o hardkey esteja conectado a uma entrada USB do computador. Ao abrir o ATMP2.2, clique em On line \rightarrow On Line \rightarrow Transfer Setup to ODIN Controller \rightarrow Yes. Com isso, aparecerá um botão de Emergency virtual, conforme abaixo:

Figura 15 – Tela inicial do ATMP no modo On Line

No modo On Line existem 3 menus ativos: Setup, Controller e Test.

- Setup As únicas configurações possíveis de serem feitas no modo On line são as de Error Limits, Signal Limits e 1-Click Recording Setup. Os dois primeiros são configurados de modo a proteger o ensaio de falhas, seja ela por problemas no equipamento ou por erro humano. Quanto ao 1-Click Recording Setup serve para configuração do tempo de gravação dos dados, os canais que serão gravados, freqüência de aquisição, etc.
- **Controller** Nesse menu estão localizados todos os sub-menus de controle de ensaio, como: Controller Panel, Controller Monitor, Display Window e Calibration;
- **Test** Nesse menu está localizado o Test Program Setup (profile) e também o Test Monitor, este ultimo possibilita a visualização de vários gráficos ao mesmo tempo.

9.1 – Controller Panel

No Controller Panel (Painel de controle) é possível realiza o setup de ensaios onde os atuadores funcionarão de forma independente, ou seja, não serão sincronizados. Abaixo estão alguns comandos presentes nessa tela:

Emergency – aciona um relé de emergência via software;

Pump On/Off – Liga / desliga bomba;

Servo Loop 0 – É o nome dado à malha de controle do atuador 0;

Curso (mm) – É o nome da variável controlada. Pode ser curso, força, etc.

CMD – É a janela de comando. Nesta janela, é configurado o valor Static (médio) da variável controlada. O Spam e Máster Spam é a porcentagem de abertura do sinal do gerador à servovalvula. **GEN** – É a janela do gerador de sinais. Nela é possível configurar o tipo de ensaio cíclico, como onda senoidal, triangular, etc;

Status - Mostra o andamento do ensaio;

PID – Nesta janela é feita a configuração dos ganhos da servovalvula, como o ganho Proporcional, Integral e Derivativo, etc;

RUN/Pause/Stop – Iniciar / Pausar / Parar o ensaio cíclico;

OFF/LOW/HIGH – Desliga / Pressão Baixa / Pressão Alta do sistema hidráulico, via rele;

0123 – É o numero do atuador hidráulico a ser controlado;

ALL – Habilita o controle da pressão hidráulica simultaneamente dos 4 atuadores;

Limits Off – habilita / desabilita o controle dos limites de ensaio;

Lock – bloqueia o acesso ao teclado do painel de controle.

Tudo isso pode ser visto na figura abaixo:

Figura 16 – Tela do Controller Panel

9.2 - Controller Monitor

O Controller Monitor é responsável pela visualização gráfica da variável controlada (Feedback) mais um gráfico escolhido pelo operador. Ao abri-lo ele automaticamente carrega o Controller Panel, conforme abaixo:

Figura 17 – Tela do Controller Monitor

Abaixo segue descrição de alguns ícones:

Manual BMED 2000 160/AT-MNB-2C - Revisão 0

🥺 - Zoom OUT Vertical

9.3 Display Window

Essa janela serve para visualizarmos numericamente o andamento do ensaio. Pode visualizar desde o tempo de ensaio, número de ciclos além de todas as variáveis de controle e monitoração, o tempo de reset da leitura (em segundos) é configurado no campo Reset Interval. O tipo de display é dividido em:

- Present Value Valor instantâneo
- Peak Valor máximo
- Valley Valor mínimo
- Center Valor médio
- Amplitude
- Valley to Peak Valor Pico-a-pico

Figura 18 – Tela do Display Window

9.4 – Test Program Setup (profiler)

Esta parte do software só é utilizado quando há necessidade de trabalhar com duas ou mais malhas de controle de forma sincronizada ou quando o ensaio é constituído de várias etapas diferentes de carregamentos ou deslocamentos.

É constituído de 39 células de programação, ou seja, é possível programar 39 comandos diferentes para cada malha de controle. A programação vai desde ao tipo de controle (curso, força, etc) até desligamento de bomba, repetições programadas, etc.

Para acessar esse menu clique em Test → Test Program Setup, então abrirá a janela a seguir.

💼 Tes	t Program Setup							_	
- 6 - 7	1 🗗 🗈 🕹 📾		 ime Se	eries					
🔽 Er	nable data acquisition	recording							
			Description						
									<u>^</u>
									\sim
Loop	Tag	Initial Feedback	Feedback Signal	0	1	2	3	4	5
>> O	Motor Torque	Input 0 💌 💌	Channel 0	<mark>⊠</mark> -0					
									>
	🗸 ОК	X Cancel							

Figura 19 – Tela inicial do Profiler

Como já foi dito, é possível configurar até 39 comandos como pode ser visto na figura acima. No caso acima nota-se que apenas uma malha de controle (Loop) está habilitada pelo hardkey (profiler).

Para esta máquina, apenas o Loop 0 (zero) está habilitado. A seguir estão os descritivos dos ícones da tela inicial do profiler.

📔 - Inserir novo comando à direita da célula selecionada

- Inserir novo comando na célula selecionada
- - Copiar comando selecionado
- * - Apaga comando selecionado

Existem ainda comandos como: Colar comando selecionado, colar coluna selecionada, copiar e colar loop selecionado, etc, mas que são pouco utilizados.

9.4.1 – Inserindo comandos no profiler

A primeira etapa é escolher o controle inicial através da coluna Initial Feedback, que está dividido em Input 0, 1, 2 e Encoder. Lembrando que o Encoder 1 serve como entrada de sinal para os servo loops 0 e 2, enquanto o Encoder 2 serve para os servo loops 1 e 3. Quando selecionado o tipo e controle, o nome da malha controlada aparecerá na coluna ao lado com o nome de Feedback Signal.

Para inserir o primeiro comando é necessário selecionar a 1ª célula vazia e clicar em Inserir novo comando através do ícone . Abrirá uma nova tela onde será feita todas as configurações do ensaio. A seguir estão descritos o funcionamento e o modo de configuração de cada item.

- **Segment**: Esta opção é utilizada quando o operador deseja inserir um comando de Rampa ou Haversine. Os parâmetros de configuração são:

- * End Point: Valor final da rampa
- * Time: É o tempo decorrido do inicio até o fim da rampa

Comnand Setup	\mathbf{X}
Servo Loop: Motor Torque	
Program Step: 0	
🔀 Segment 🛛 💆 Cyclic 🔤 Dwell 🗈 Labe	I 📫 <u>R</u> epeat 🆓 <u>A</u> ction
🛣 🔟 ait 🛛 💲 Prompt User 🛛 🖵 Digital <u>O</u> utput 🛛 🗾	🚪 Set Static: 🔰 🔨 Amp. Control
Segment Type: 🗾 Haversine 📝 Ramp	
End Point: 1 V Time: 5,0 seconds	
Feedback: Input 0: Channel 0	Range: -10 to 10 V
Cancel	

Figura 20 – Tela de configuração de ensaio em Rampa

- **Cyclic**: É utilizada quando o ensaio cíclico. São 4 os tipos de ondas possíveis: Senoidal, triangular, quadrada e dupla senoidal. Os principais parâmetros de configuração são:

- * Count: Número de ciclos a serem realizados
- * Amplitude
- * Frequency: É a freqüência de ensaio (Hz)
- * Phase: É o ângulo de fase entre este módulo e os outros instalados no controlado

Comnand Setu	ID								
Servo L	.00D:	Motor Tore	ue						
Program Step: 0									
Z Segment		E Dwell	∎ Label	C. Beneat	Continue Action				
Zegment Uvcic Zegment Devel Zabel District Action									
🛆 wait a Prompt User 🔟 Digital Uutput 🗾 Set Static: 🔼 Amp. Control									
Waveform Typ	e: 🚺 Sine 🚺	Triangle	🔲 🔟 Square	🛛 🔤 🖸 Double Sine					
Count:	100	cycles	Tapering time	e 0,0	seconds				
			Transition time	e 1,0	seconds				
Offset:	0	V							
±Amplitude:	2	V	±Amplitude 2	2	V				
Frequency:	5,00	Hz	Frequency 2	: 3,00	Hz				
Phase:	0,0	degrees	Phase 2	<u>.</u> 0,0	degrees				
Ducty cycle:	50,0	%							
F	Edit duty cycle for	r triangle wa	aveform						
Vel. up:	1	V/s							
Vel. down:	1	V/s							
Easthacky June 0: Channel 0. Range: 10 to 101/									
reedback: Input u: Channel U Hange: -10 to 10 V									
🗸 ок	X Cancel								

Figura 21 – Tela de configuração de ensaio Cíclico

- Dwell: É o comando de parada do ensaio. Os parâmetros são:

* Time: É o tempo de parada do ensaio (segundos)

* Feedback: É possível realizar a troca da variável controlada (Input 0, 1, 2 ou Encoder) ou simplesmente manter a mesma (Do not change).

Comnand Setup 🛛 🔀
Servo Loop: Motor Torque
Program Step: 0
🖌 Segment 🛛 Cyclic 🔲 🛄 Dwell 🕒 Label 🗂 Repeat 🏼 🎲 Action
🛣 🔟 ait 🔰 💲 Prompt User 📕 🖵 Digital Output 🛛 🗾 Set Static: 🛛 📉 Amp. Control
Time: 10,0 seconds Feedback: Do not change Do not change Input 0: Channel 0 Input 1: Torque Rotacion Input 2: Channel 2 Encoder: Angulo Torque
Feedback: Input 0: Channel 0 Range: -10 to 10 V
V OK X Cancel

Figura 22 – Tela de configuração do comando Dwell

- **Label**: Inserindo este comando, o operador colocará um número de label (ponto) de repetições. Ele será utilizado no comando Repeat.

Comnand Setup 🛛 🛛 🔀
Servo Loop: Motor Torque
Program Step:0
🖌 Segment 🛛 M Cyclic 🛛 📇 Dwell 🛛 🗈 Label 🖉 Bepeat 🛛 🎲 Action
🛣 🔟 ait 🔰 Set Static: 🗌 🔽 Amp. Control
Label number: 🔲 🚖
Feedback: Input 0: Channel 0 Range: -10 to 10 V
V OK X Cancel

Figura 23 – Tela do comando Label

- **Repeat**: Este comando realizará operações de repetições a partir do label selecionado. Está dividido em:

* Label number: É o ponto de inicio das repetições

* Number of Repeats: Número de repetições a serem realizadas antes do próximo

comando

Comnand Setup	
Servo Loop: Motor Torque	
Program Step: 0	
🔀 Segment 🛛 Cyclic 🖾 Dwell 🗈 Labe	el 🚺 <u>R</u> epeat 🎯 Action
🐰 🛛 📓 Prompt User 🛛 🖵 Digital Output	🧧 Set Static: 🛛 🔨 Amp. Control
Label number: D	
Feedback: Input 0: Channel 0	Range: -10 to 10 V
🗸 OK 🗶 Cancel	

Figura 24 – Tela do comando Repeat

- **Action**: Este comando insere uma ação a ser realizada pelo controlador. Dentre as várias ações possíveis estão: Pump On/Off, Pressure Off/Low/High, Limits Off/On, Test Stop, etc.

Comnand Setup	X
Servo Loop: Motor Torque	
Program Step: 0	
🖌 <u>S</u> egment 🛛 👭 <u>C</u> yclic 🛛 🛄 🛛	🕨 Label 🛛 🖸 <u>R</u> epeat 🛛 🎲 Action
🛣 🔟 ait 🛛 💈 Prompt <u>U</u> ser 📄 🖵 Digital <u>O</u> utpu	it 🛛 🗾 Set Static: 🛛 🔨 Amp. Control
Action Type: 🟉 Pump Off	T
Pump Off Pump On Pressure Off Pressure Low Pressure High Limits Off Limits On Disable Amp Control Allow Amp Control Disable Mean Control Allow Mean Control Program End Test Stop	
Feedback: Input 0: Channel 0	Range: -10 to 10 V
🗸 OK 🛛 🗶 Cancel	

Figura 25 – Tela do Comando Action

- Wait: É um comando de espera. Está dividido em:

* Digital Input: Este comando aguarda por um sinal externo, seja do operador ou do equipamento, em uma de suas entradas digitais.

- * Level Crossing
- * Profiler Step

Comnand Setup	×
Servo Loop: Motor Torque	
Program Step: 0	
🖌 Segment 🛛 M Cyclic 🗳 Dwell 🗈 Label	🖆 <u>R</u> epeat 🏼 🆓 Action
🔀 🔟 🕍 Prompt User 🛛 📕 Digital Output	Set Static: 📃 🔨 Amp. Control
☐ Digital Input	
Digital input channel: User DI 0: User DI 0 Wait for Digital Input © 0FF © 0N	T
Timeout: 0,0 If time out go to Label: 0 全	seconds
Feedback: Input 0: Channel 0	Range: -10 to 10 V
OK X Cancel	

Figura 26 – Tela do comando Wait

- Prompt User:

Comnand Setup
Servo Loop: Motor Torque
Program Step: 1
🔀 Segment 🛛 Cyclic 🛄 Dwell 🗈 Label 🖬 Repeat 🆓 Action
🛣 址 ait 🔰 💈 Prompt User 📕 🦵 Digital Output 🔰 Set Static: 📃 🔨 Amp. Control
Message:
Ask user for: OK
If [Cancel/No] go to Label: 0
Message Tag: 0
Timeout: 0,0 seconds
⊂ Default User Answer (timeout)
Feedback: Input 1: Torque Rotacion Range: -52,466 to 52,466 N.m
V OK X Cancel

Figura 27 – Tela do comando Prompt User

- Digital Output: É a configuração das 4 saídas digitais. Os parâmetros são:
 - * Digital output channel: Escolhe o número da saída a atuar (0, 1, 2 e 3)
 - * Output Action: Escolhe o modo de atuação (OFF, ON, OFF Pulse ou ON Pulse)
 - * Time: Tempo de atuação da saída digital

Comnand Setup	
Servo Loop: Motor Torque	
Program Step: 1	
🖊 Segment 🛛 M Cyclic 🛛 📮 Dwell 🗈 Label	🖆 <u>R</u> epeat 🏼 🍪 Action
🛣 🔟 ait 🔰 💈 Prompt 🛛 ser 🛛 🦵 Digital 🖸 utput 🗾	Set Static: 📃 🔨 Amp. Control
Digital output channet: User DO 0: User DO 0 Output Action: Time: 0.0 secon	▼ ▼ ds
Feedback: Input 1: Torque Rotacion	Range: -52,466 to 52,466 N.m
V OK X Cancel	

Figura 28 – Tela do comando Digital Output

- **Set Static**: Insere um novo valor estático (setpoint) para variável controlada. Está divido em:

- * New Static: Novo valor de setpoint
- * Time: Tempo decorrido para chegar ao novo valor
- * Span: Valor em porcentagem de abertura de driver para a malha de controle
- * Master Span: Valor em porcentagem de abertura de driver para todas as malhas de

controle

Comnand Setup	
Servo Loop: Motor Torque	
Program Step: 1	
<mark>∕ S</mark> egment <mark>№ C</mark> yclic <mark>⊥</mark> Dwell 🕒 Labe	I <u>B</u> epeat 🐼 Action
🛛 🔟 ait 🔹 Prompt <u>U</u> ser 🖵 Digital <u>O</u> utput	🖌 Set Static: 🛛 🔨 Amp. Control
New Static 0 N.m	
Time: 1,0 seconds	
Span: 0,0 %	
Master Span: 0,0 %	
Feedback: Input 1: Torque Rotacion	Range: -52,466 to 52,466 N.m
V OK X Cancel	

Figura 29 – Tela do comando Set Static

- Amplitude Control: Está dividido em: Amplitude Control e Mean Control.

Comnand Setup	
Servo Loop: Motor Torque	
Program Step: 1	
🗾 Segment 🚺 Cyclic 📑 Dwell 🗈 Label 🛍 Repeat 🏟	Action
🛣 👑 ait 🔰 💈 Prompt 🛛 ser 📔 📕 Digital 🖸 utput 🛛 🗾 Set Static: 🗌 🔨 Amp	. Control
Amplitude Control	
C Allow amplitude control	
Feedback signal : Input 1: Torque Rotacion	
Feedback signal range: -52,466 to 52,466 N.m	
Amplitude Setpoint: 0 N.m	
Mean Control	
Allow mean control	
Feedback signal : Encoder: Angulo Torque	
Feedback signal range: -589,82 to 589,82 Graus	
Mean Setpoint: 0 Graus	
Feedback: Input 1: Torque Rotacion Range: -52,466 to 52,466 I	N.m
V OK X Cancel	

Figura 30 – Tela do Amp. Control

Após configurar o ensaio, é necessário transferi-lo para o controlador. Para fazer isto, basta clicar em Test \rightarrow Transfer Program to Controller \rightarrow Yes.

9.5 – Test Monitor

Neste tipo de ensaio não Controller Monitor não será mais utilizado. Para visualização gráfica dos dados deve-se utilizar o Test Monitor. Fazem a mesma função mas possuem algumas diferenças.

O Test Monitor além de mais janelas de gráficos, possui a vantagem de adicionar ou retirar os mesmos. Também possui os botões:

- Run Test: Serve para dar inicio ao ensaio programado através do profile
- Pause: Serve para pausar o ensaio
- Stop Test: Serve para encerrar o ensaio

O Test Monitor trabalha em conjunto com o Controller Panel, ou seja, é necessário abrilo para controlar os atuadores, bomba hidráulica, válvulas de pressão, etc.

Image: Contract of the second seco	💼 Test Monite	or: NONAME.SPA		
40 Torque Rotacion (N.m) 0,15 20 0 0,15 0 0 0,15 10 Curso Axial (mm) 0,206 5 0 0 0 <th>│ ◎ 1 + ⊡</th> <th>振 역</th> <th></th> <th></th>	│ ◎ 1 + ⊡	振 역		
10 Curso Axial (mm) 5 0 -5 0 -10 0,206 400 Força Axial (kg) 200 -10 -00 -10 -10 -10,99 -10,00 -19,9 -10,00 -19,9 -10,00 -19,9 -10,00 -19,9 -10,00 -19,9 -10,00 -19,9 -10,00 -19,9 -10,00 -19,9 -10,00 -19,9 -10,00 -19,9 -10,00 -19,9 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00	40 20 - 0 -20 -20 -40	Torque Rotacion (N.m) I	0,15	Emergency
400 Força Axial (kgf) 200 - - 0	- 10 - 0	Curso Axial (mm)	0,206	Run Test
400 Angulo Torque (Graus) 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400 200 - 0 -200 -400	Força Axial (kgf) -	-19,9	Stop Test
-400 -400 0 s 2 s 4 s 6 s 8 s 10	400 200 - -200 -400	Angulo Torque (Graus) Angulo Torque (Graus)	0,0	

Figura 31 – Tela do Test Monitor

9.6 – Configuração de limites

Para impedir que possíveis danos sejam causados à amostra ou até mesmo ao equipamento, é possível configurar limites para as variáveis de controle ou de monitoração. São dois os tipos de configuração possível: Error Limits e Signal Limits.

9.6.1 – Error Limits

Como o próprio nome diz, esses limites são de erro. O erro é a diferença entre o comando enviado pelo controlador (Command) e a resposta real do ensaio (Feedback). Sua configuração é pouco utilizada visto que geralmente os limites que serão mais utilizados são os limites das variáveis controladas (Signal Limits). Sua configuração é muito, conforme abaixo:

- Coluna ALL Loops Ao selecionar essa opção e o limite de erro configurado for atingido, o controlador realizará o comando para todas as outras malhas de controle (0, 1, 2 e 3);
- Coluna Pump Off Ao selecionar esta opção, o controlador desligará a unidade hidraulica de força;, caso o limite de erro seja atingido;
- Coluna Press Off Ao selecionar esta opção, o controlador corta a alimentação de uma válvula pressão ON/OFF, caso o limite de erro seja atingido. Não se aplica a máquina de joelho.
- Coluna Hyd Low Ao selecionar esta opção, o controlador acionará a pressão baixa no sistema hidraulico.
- Coluna Test Stop Esta opção encerra o ensaio caso o limite de erro seja atingido;
- Coluna N. Cycles Limit Esta opção encerra caso o numero de ciclos seja atingido;
- Coluna FBK : Input Signal Name É o nome da variável controlada ou monitorada;
- Coluna Error Range É o fundo de escala de configuração do erro;
- Coluna Instant Error Limit É o limite de erro instantâneo;
- Coluna Ampl. Error Limit É limite de amplitude permitido do erro;
- Coluna Mean Error Limit É o valor de erro médio permitido;

Error L	Error Limits Setup							
B.								
		ALL	FBK: Input 1	Error	Inst. Error	Ampl. Error	Mean Error	FBK: Input 2
Loop	Tag	Loops	Signal Name	Range	Limit	Limit	Limit	Signal Name
>> O	Servo loop 0		Channel 1 (V)	10	10	10	10	Channel 2 (V)
1	Servo loop 1		Channel 5 (V)	10	10	10	10	Channel 6 (V)
2	Servo loop 2		Channel 9 (V)	10	10	10	10	Channel 10 (V)
3	Servo loop 3		Channel 13 (V)	10	10	10	10	Channel 14 (V)
<u> </u>								>
		🖊 ОК	X Cancel					

Figura 32 – Tela de configuração de limites de erro

9.6.2 – Signal Limits

Nessa tela é feita toda a configuração de limites máximos e mínimos das variáveis de controle ou monitoração do ensaio. A configuração é parecida com a do Error Limits. A única diferença é que é possível configurar tanto um limite inferior (Lower Limit) quanto um limite superior (Upper Limit) para cada variável.

💼 Signal Limits Setup									_ 0	X			
		Inp Range	Inp Range	ALL	Lower	Pump	Pres	Hyd	Test	Upper	Pump	Pres	Hya
Channel	Signal Name	Low	High	Loops	Limit	Off	Off	Low	Stop	Limit	Off	Off	Loi
>> O	Channel 0 (V)	-10	10		-10					10			
1	Channel 1 (V)	-10	10		-10					10			
2	Channel 2 (V)	-10	10		-10					10			
3	Channel 3 (V)	-10	10		-10					10			
4	Channel 4 (V)	-10	10		-10					10			
5	Channel 5 (V)	-10	10		-10					10			
6	Channel 6 (V)	-10	10		-10					10			
7	Channel 7 (V)	-10	10		-10					10			
8	Channel 8 (V)	-10	10		-10					10			
9	Channel 9 (V)	-10	10		-10					10			
10	Channel 10 (V)	-10	10		-10					10			
11	Channel 11 (V)	-10	10		-10					10			
12	Channel 12 (V)	-10	10		-10					10			
13	Channel 13 (V)	-10	10		-10					10			
14	Channel 14 (V)	-10	10		-10					10			
15	Channel 15 (V)	-10	10		-10					10			
16	Channel 16 (V)	-10	10		-10					10			
17	Channel 17 (V)	-10	10		-10					10			
<													

Figura 33 – Tela de configuração dos limites máximos e mínimos de ensaio

Para habilitar ou desabilitar os limites basta clica no ícone Limits Off, localizado no Controller Panel. Os limites seguem a configuração abaixo:

Off - Leitura dos limites configurados está desabilitada;

9.7 – Gravação de dados

É possível gravar dados através da opção 1-Click Recording Setup, localizado no menu Setup. O operador poderá gravar todos os dados de ensaio ou escolher dados específicos. Para escolher quais os dados serão gravados basta selecioná-los na caixa ao lado de cada variável. Além de escolher os dados a serem gravados, pode configurar os seguintes itens:

- Recording Time É o tempo (em minutos) de gravação do ensaio;
- Sample Frequency É a freqüência de aquisição dos dados, em Hz;
 - User filter Configura a utilização ou não de filtro passa baixas na aquisição de dados;

1-Click Recording Setup							
ble able a Recording tim	e: 5 minutes	Sample frequency: 500 Hz	🗸 🔽 Use filter				
ble able a Recording tim V 00: Channel 0 V 01: Channel 1 V 02: Channel 2 V 03: Channel 3 V 04: Channel 3 V 04: Channel 4 V 05: Channel 5 V 06: Channel 6 V 07: Channel 7 V 08: Channel 8 V 09: Channel 9 V 10: Channel 10 V 11: Channel 11 V 12: Channel 12 V 13: Channel 13 V 14: Channel 14 V 15: Channel 15	e: 5 minutes	Sample frequency: 500 Hz	Use filter				
Initial Commentation Initial Commentatio	Cancel						

Figura 34 – Tela de configuração da gravação de dados

Para iniciar a gravação, é necessário clicar no ícone 💽, localizado no Controller Monitor ou no Test Monitor.